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Background & Context

• Current pricing regressions incorporate seasonality through 13 uniform quad periods per year, 
roughly aligned to holidays.

• Quad boundaries may misalign with true demand patters → risk of capturing noise instead of 

seasonality

• Clustering weeks into fewer data-driven seasons can:

• Better reflect actual demand trends

• Reduce model complexity & collinearity

• Improve interpretability

• Bases season definitions on client-specific data
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Executive Summary

• Problem Statement: How can we replace fixed quad-period seasonality with data-driven seasonal clusters to 
reduce pricing regression complexity and capture true demand variation.

• Hierarchical Agglomerative Clustering

• Base Dollar Velocity

• Base Dollar Velocity & Time

• Evaluation Metrics

• Silhouette Score, Calinski-Harabasz (CH) Index, Davies-Bouldin (DB) Index

• Dendrogram

• Silhouette Plot

• Velocity & Time Clustering only: Silhouette Score vs. Alpha plots

• Regressions

• Compare Demand Indices and regression model metrics between pricing regressions that:

• do not use period

• use standard quad-periods

• use clustered periods
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Visual Overview: Quad Periods vs. Clustered Seasons – Martinelli’s Data 
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Data & Attributes

• Datasets for building clustering pipeline:

• Chomps (low seasonality)

• TruFru (medium seasonality)

• Martinelli’s (high seasonality)

• Attributes:

• Account: Total US Food

• Base Dollar Velocity: Base Dollars / Stores Selling / Weeks in Distribution

• Velocity is aggregated over multiple years

• Note: Database baselines are used
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Methodology

• Hierarchical agglomerative clustering

• Clustering on velocity

• Clustering on velocity & time

• Alpha optimization

• Regression Validation
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Hierarchical Agglomerative Clustering

• Unsupervised machine learning: no 
input-output pairs, no period labels on 
week numbers

• Agglomerative: every data point in its 
own cluster → merge similar pairs of 

clusters until 1 is left

• Linkage Criterion: methods for 
deciding the order of cluster 
combinations

• Single, complete, average, 
weighted, centroid, median, ward

GIF Source: Makkar, Vast Data Deduction (students x students, 2022)
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Cluster Evaluation Metrics

• Dendrogram: tree diagram showing how clusters merge step-by-step; merge height reflects the 
distance between joined clusters.

• Silhouette Score: measures how similar a point is to its own cluster compared to other clusters. 
Ranges from -1 (poor fit) to 1 (well separated); higher is better.

• CH Index: ratio of between-cluster variance to within-cluster variance, adjusted for number of 
clusters. Higher values indicate better defined clusters.

• DB Index: measures average similarity between each cluster and its most similar other cluster; 
lower values indicate tighter, more distinct clusters.
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Clustering on Velocity
Case Study: Chomps

Takeaway: Narrow focus to Single Linkage & Silhouette Score
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Chomps – Velocity 
Clustering

IRI Data, Chomps L156 WE 2/23/25 (Year-over-Year Aggregated) – Total US - Food 

Note: k_max = 13
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Chomps – 
Dendrograms

Note: k_max = 13

IRI Data, Chomps L156 WE 2/23/25 (Year-over-Year Aggregated) – Total US - Food 
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Chomps – 
Silhouette Plots

Note: k_max = 13

IRI Data, Chomps L156 WE 2/23/25 (Year-over-Year Aggregated) – Total US - Food 
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Chomps – Silhouette Score, CH Index, DB Index by Number 
of Clusters

Note: k_max = 13

IRI Data, Chomps L156 WE 2/23/25 (Year-over-Year Aggregated) – Total US - Food 
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Clustering on Velocity & Time
Case Study: TruFru

Takeaway: Incorporating time in a custom distance function typically 
worsens clustering
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Custom Distance Functions Tested

❖Linear: Combines normalized week difference and velocity difference with a weighted 
average

• Squared Velocity: Same as linear, but velocity difference is squared to emphasize larger 
gaps

• Exponential Decay on Time: Uses exponential decay for time difference, making 
nearby weeks much closer

• Cosine Bump Distance: Gives extra closeness to weeks within 4 using a cosine curve, 
then switches to linear growth; piecewise function
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TruFru – Clustering With & 
Without Time

Without Time With Time

• Linear Distance Function:

• Generally lower silhouette scores

• Clustering with time led to an optimized 
silhouette score at a lower number of 
clusters

 

where α = 0.2

IRI Data, TruFru L156 WE 1/5/25 (Year-over-Year Aggregated) – Total US - Food 
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TruFru – Increasing Alpha (putting more weight to the time 
component in calculating distance) generally worsens average 
silhouette score

• Linear distance function

• Single linkage

• Number of Clusters = 6

 

IRI Data, TruFru L156 WE 1/5/25 (Year-over-Year Aggregated) – Total US - Food 
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Assessing Results with 
Pricing Regressions

Case Study: Martinelli’s

Takeaway: Clustered seasons can help improve regression R-squared
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Martinelli’s – Complete linkage appears to cluster seasons 
more effectively in this case
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Martinelli’s – Clustered periods yield highest R-squared in 
pricing regression

Demand Indices

Price
Percent of 
Base Units

No Period 
Factor

13-Periods 
Factor

Clustered 
Periods Factor

$2.99 16% 1.00 1.00 1.00
$3.49 49% 0.65 0.73 0.84
$3.99 20% 0.37 0.56 0.60
$4.49 7% 0.31 0.51 0.51
$4.99 6% 0.27 0.45 0.46
$5.49 3% 0.25 0.43 0.43
Constant Elasticity -2.51 -1.36 -1.62

R-squared 0.83 0.90 0.94

  No Period Factor: np.log(Q('Base Units')) ~ PriceFactor + np.log(Q('ACV')) + AccountFactor

 13-Periods Factor: np.log(Q('Base Units')) ~ PriceFactor + np.log(Q('ACV')) + AccountFactor + PeriodFactor

       3 Clusters Period Factor: np.log(Q('Base Units')) ~ PriceFactor + np.log(Q('ACV')) + AccountFactor + ClusteredPeriodFactor

Regression on single SKU: Martinelli’s Gold Medal Apple Sparkling Cider – Glass Bottle, 25.4 oz (1 ct)
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1.43 0.82 0.69 0.79 0.74 0.73 0.68 0.62 0.63 0.69 0.80 1.76 2.65

0.26

0.67

2.07

Seasonality Coefficients

IRI Data, Martinelli’s 2022-2024 Weekly (Year-over-Year Aggregated) – Total US - Food 
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Challenges

• Mapping week numbers across multiple years and aligning holidays consistently

• Many parameters that need to be optimized are at play:

• Number of clusters

• Linkage criteria

• Custom distance metric

• Alpha value (time vs. velocity weight in chosen custom distance metric)

• Choice of evaluation metric (Silhouette, CH, DB, regression-based)

• Hard to make a definitive conclusion on impact. Benefits of clustering do not appear to be 
consistent across datasets and metrics
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Continuations

Pipeline

• Implement Python code into Excel for consolidated processing-clustering-regression pipeline.

Regressions

• Determine optimal cluster assignments by maximizing adjusted R-squared or minimizing collinearity metrics (e.g., 
variance inflation factor, condition number).

• Run the regression pipeline on additional datasets to better quantify the impact of weekly clustering on pricing 
regressions.

• Compare elasticity predictions from the standard model vs. the clustered model using pre–price-increase data and 
evaluate which one performs better.

Time-Continuous Seasons

• Explore Markov-constrained clustering to enforce that weeks in the same season are contiguous in time.

• Continue developing and testing custom distance formulas that blend velocity difference with week difference.

Extending Beyond Seasonality – DAFI-Gower Clustering (Liu et al., 2024)

• Apply a modified Gower distance that balances the influence of different variable types (numeric, categorical, binary) 
by scaling them to comparable ranges and weighting them by their importance. 

• Potential variables: velocity, product attributes (package size, flavor, category), promo status, ACV, and account/channel type.
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Appendix
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Chomps – Clustering on Velocity
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Chomps – Clustering on Velocity & Time (alpha = 0.1, exp. 
decay distance function)
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TruFru – Clustering on Velocity
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TruFru – Clustering on Velocity & Time (alpha = 0.1, exp. 
decay distance function)

IRI Data, TruFru L156 WE 1/5/25 (Year-over-Year Aggregated) – Total US - Food 
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Martinelli’s – Clustering on Velocity

IRI Data, Martinelli’s L156 WE 12/29/24 (Year-over-Year Aggregated) – Total US - Food 
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Martinelli’s – Clustering on Velocity & Time (alpha = 0.1, exp. 
decay distance function)

IRI Data, Martinelli’s L156 WE 12/29/24 (Year-over-Year Aggregated) – Total US - Food 
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Linkage Criterion

• Single linkage – Distance between two clusters = shortest distance between any two points (nearest 

neighbor). Can create “chained” clusters.

• Complete linkage – Distance = farthest distance between any two points (furthest neighbor). Produces 

compact, evenly shaped clusters.

• Average linkage – Distance = average of all pairwise distances between points in the two clusters. Balances 

chaining and compactness.

• Weighted linkage – Like average linkage but updates distances with equal weight to each existing cluster, 

regardless of size.

• Centroid linkage – Distance between clusters = distance between their centroids (mean vectors). Can 

cause reversals in dendrograms.

• Median linkage – Similar to centroid but uses median instead of mean for each dimension; more robust to 

outliers.

• Ward’s linkage – Merges clusters that result in the smallest increase in total within-cluster variance; tends to 

create clusters of similar size.



Copyright © 2025 Omnium, LLC. All Rights Reserved
34

Linkage Criterion – SciPy Documentation

Source: SciPy v1.16.1 documentation
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Cluster Evaluation Metrics – scikit-learn Documentation

Source: Source: scikit-learn documentation — Clustering performance evaluation

Silhouette Score
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Cluster Evaluation Metrics – scikit-learn Documentation

CH Index

Source: Source: scikit-learn documentation — Clustering performance evaluation
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Cluster Evaluation Metrics – scikit-learn Documentation

DB Index

Source: Source: scikit-learn documentation — Clustering performance evaluation
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Custom Distance Functions
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